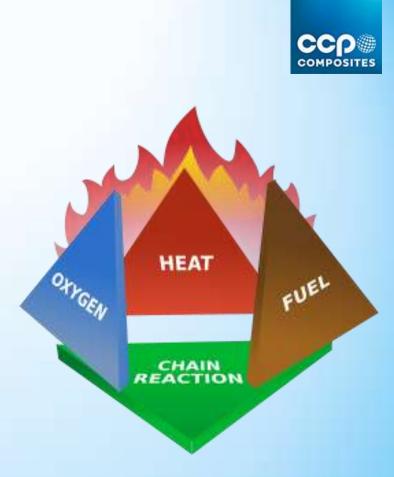

CCP Composites

Unidades de produção e centro de desenvolvimento no mundo

20 unidades de produção incluindo 5 de mistura e 4 de industrialização

eep

COMPOSITES


Halogen Free Intumescent FR solutions for Aircraft Interiors, Mass Transit and Architectural Panels

Rick Pauer, Market Manager

Four Mechanisms of Fire Retardation

- Dilution of Gas Phase- Inert gas (CO2) or water (steam) reduces oxygen and combustible gas %
- Endothermic Degradation- Fire consumes energy during fire, which in turn helps put fire out (i.e. ATH)
- Gas Phase Radical Quenching-Halogen (RBr) reaction is preferred and ties up very reactive H and OH radicals in gas phase, forming HBr.
- Thermal Shielding- Creates an insulation barrier that separates the fire flame from the fuel source (blanket or intumescent char materials)

Fire tetrahedron

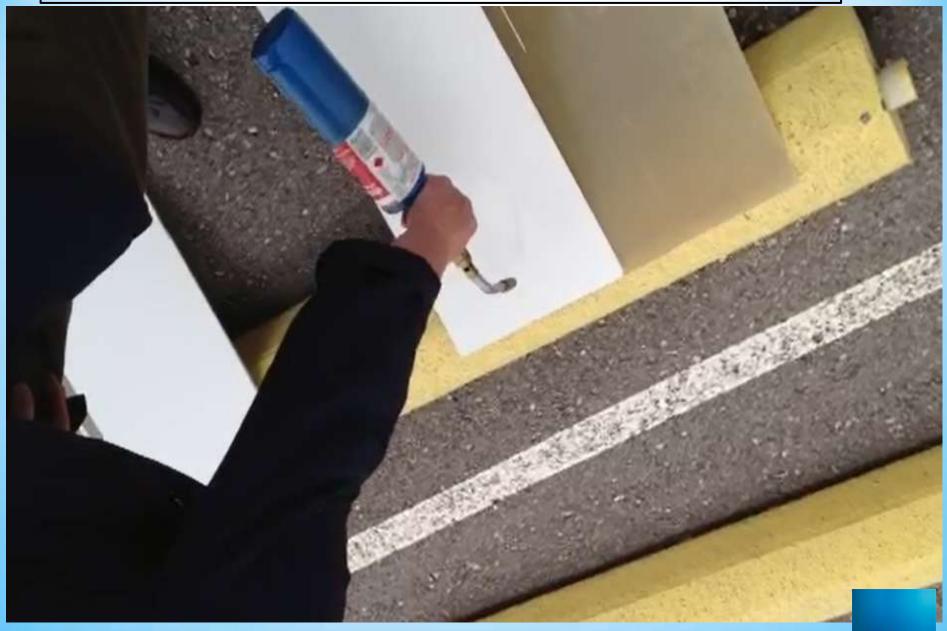
FR or FR ?

• A Flame Retardant material is one that is designed to resist burning and withstand heat.

- Fire Resistant materials are designed not to burn at all.
- Intumescent materials are Flame Retardant not Fire Resistant.

Traditional fire resistant materials in plastics have used halogenated (bromine/chlorine) **based polymers and FR** fillers (i.e. Antimony, ATH, etc.) to meet FR specs. Toxicity of the gases and high smoke are of concern when using these.

20 second burn video of UPR, FR UPR and Intumescent technology



Intumescent materials work by forming a char layer at the interface of the fire source and the composite laminate, thus cutting off the oxygen accelerant from the organic fuel source.

30 sec video of fire char formation on gel coat with propane blow torch

Intumescent resins and gel coat

FBH 81269 TF - General Purpose Applications in Hand Lay UP and Spray Up.

- FB H 81270 TF- Aerospace, Hand Lay up and Spray up.
- Lightweight at < 1.40 specific gravity
- FB P 81091 TF- Pultrusion Applications
- FB | 81268 F- RTM and Infusion
- FB M 81266TF- Heat cure, closed molding
- FB 2330- FB Gel Coat (<1.44 specific gravity)

Quick review of intumescent product properties

 Meets a variety of flame-retardant specifications including UL 94 V-0, ASTM E 162-02a, and EN TS 4554-2, FAR 25.853 for transportation applications.

Meets Low Smoke generation specifications
 of ASTM E 662 and EN/ISO 5659-2

 Meets Low Toxicity standards of Bombardier SMP800C and EN TS 45545-2 annex C

Quick review of intumescent product properties

- CMR component free
 (Carcinogenic, Mutagenic or
 toxic- free for Reproduction)
- <u>Halogen</u> and <u>Antimony</u> free
- Low filler content and relatively, <u>Low density</u>
- Very high <u>fire protection</u>

 Industrial Ductwork, Smoke Stacks Architectural Panels, Building Material, **Facades, Theme Parks** Aerospace/Military Plane Interiors, Cargo Bins, etc. Transportation/Mass Transit, Buses, Trains, Subways, Ferries

<u>Industrial</u>

- Ductwork, Smoke stacks
- Utility boxes with FR specs
- Usually requires corrosion resistance

Common test to pass is ASTM E84 or UL 94V-0

Architectural

- Panels (interior and exterior)
- Building Materials (< 40 feet)
- Facades
- Theme Parks (i.e. Disney, Universal)

Common test to pass is ASTM E84

<u>Military/Aerospace</u>

- MIL-STD-2031 (SH), Fire and Toxicity Methods and Qualification Procedure for Composite Material Systems on Naval Submarines
- MIL-R-21607 Various Marine and Shore Uses

Interiors of Planes, Cargo Bins, Etc.

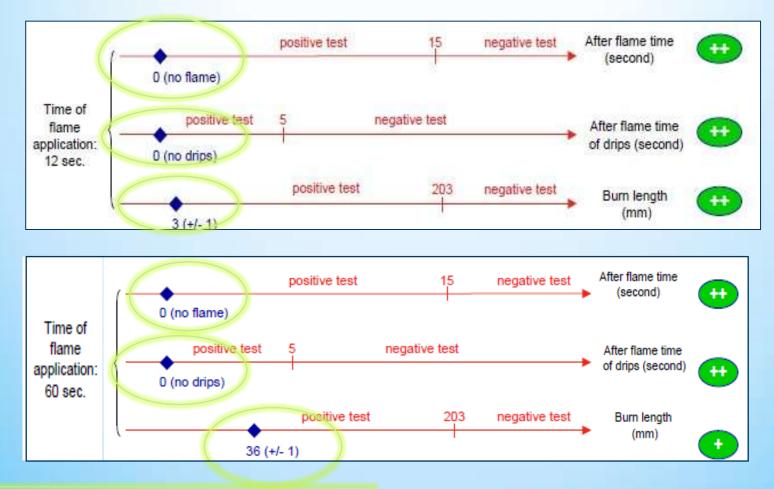
- Aircraft Cargo Bins FAR 25.855
- Aircraft Interiors FAR 25.853

Interior parts specifications, Airbus specific

The aeronautic grade of the intumescent system meets the following AITM specifications:

AITM 2.0002 – Fire spread-12 and 60 sec vertical; (ASTM F501 FAR 25.853a)

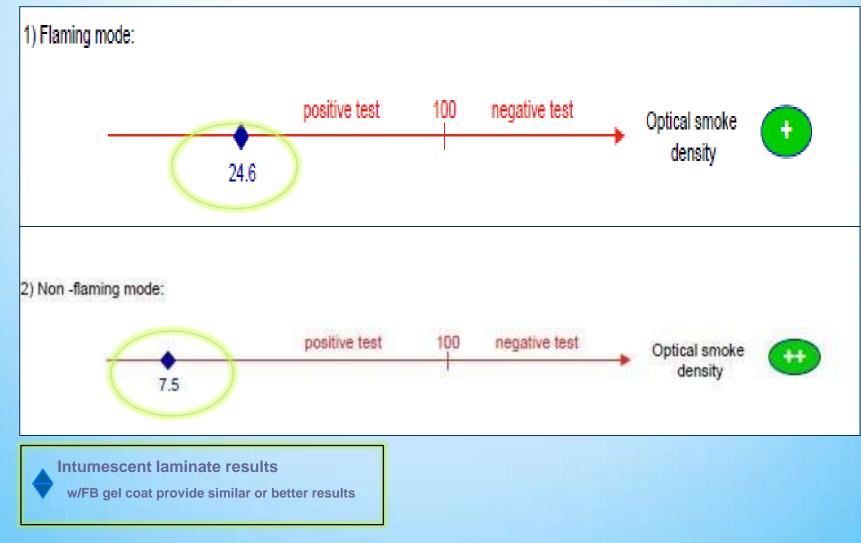
- AITM 2.0007 Smoke opacity (NBS Smoke, ASTM F814)
- AITM 3.0005 Fumes toxicity (SMP800)


AITM 2.0006 – Heat release and heat release rate; OSU Heat Release, ASTM E906 (modified)

- All AITM tests hereafter have been done with a laminate made of:
- 450 g/m² CSM (~20% in weight)
- FB H 81370 TF (~80% in weight)
- Gelcoat POLYCOR 2130 PA (400-500 mm, 16-18 mil) if mentioned

AITM 2.0002 - Fire spread:

Intumescent resin is compliant at both 12 sec and 60 sec flame applications


Intumescent laminate results

w/FB gel coat provide similar or better results

AITM 2.0007 – Smoke Opacity:

Intumescent resin is compliant in both Flaming and Non-Flaming Mode

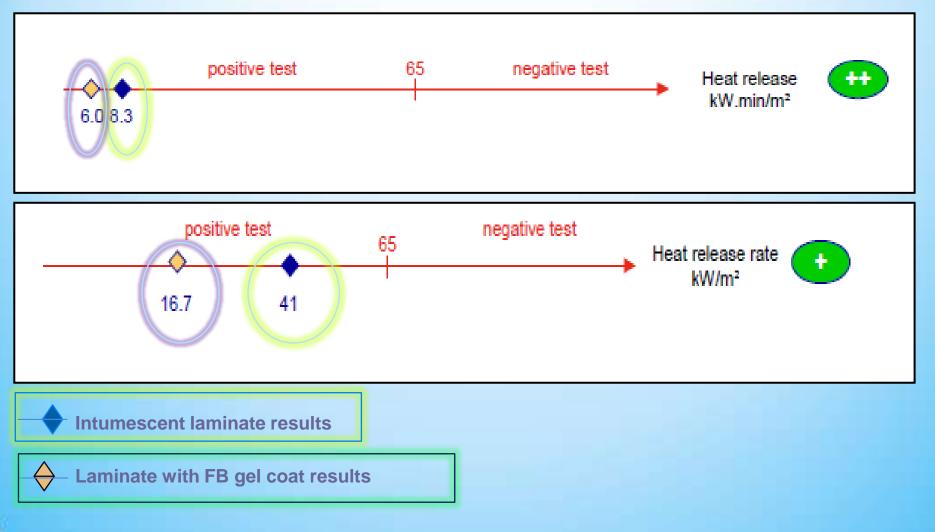
AITM 3.0005 – Smoke Toxicity:

Intumescent Resin is Compliant for Airbus (below), as well as Boeing and Bombardier (HBr <100 ppm)

Geo	Concentration	R	Construction	
Gas	limit (ppm)	Flaming mode	Non flaming mode	Conclusion
HF	100	0	0	•••
нсі	150	0	0	•
HCN	150	20	0	•
S O ₂ / H ₂ S	100	< 20	< 20	•
NO / NO ₂	100	< 5	0	•
со	1000	100	0	•

Laminate results

w/FB gel coat provide similar or better results



AITM 2.0006 – Heat Release (OSU test):

Intumescent resin and gel coat are compliant.

Note: improvement with intumescent gel coat

Transportation/Mass Transit

- Buses
- Trains
- Subways
- Ferries

Common test to pass is UL 94V-0, ASTM E-662, Bombardier SMP800-C in N. America and EN TS 45545-2 in Europe

Test	Results ⁽¹⁾		
UL 94	V-0 Rating		
ASTM E162-08 Surface Flammability of	Flame Spread Index, Is = 1	10	
Materials using a Radiant Heat Energy	-		
Source			
ASTM E 662 Optical Smoke Density	Flaming	Non-Flaming	
 Specific Optical Density (D_s) at1.5 min 	$D_{s} = 8$	$D_{s} = 1.3$	
 Specific Optical Density (D_s) at4.0 min 	$D_{s} = 60$	$D_{s} = 18$	
Bombardier SMP 800-C ⁽²⁾	Flaming – Passed	Non-Flaming – Passed	
	CO – 636	CO - Not detected	
	$CO_2 - 17,778$	CO ₂ -1,361	
	HBr – Not detected	HBr – Not detected	
	HCl – Not detected	HCl – Not detected	
	HCN – Not detected	HCN – Not detected	
	HF – Not detected	HF – Not detected	
	NO _x - 86	NO _x – Not detected	
	SO ₂ – Not detected	SO ₂ – Not detected	

Laminate - All flammability tests run with FB82169 TF resin, 3 plies of 1.5 oz. CSM (22%). Resin catalyzed with 0.05% Cobalt 12% and 1.0% DDM-9 peroxide. Post cured @150F for 4 hours. All results are max detected concentrations.

Hazardous levels

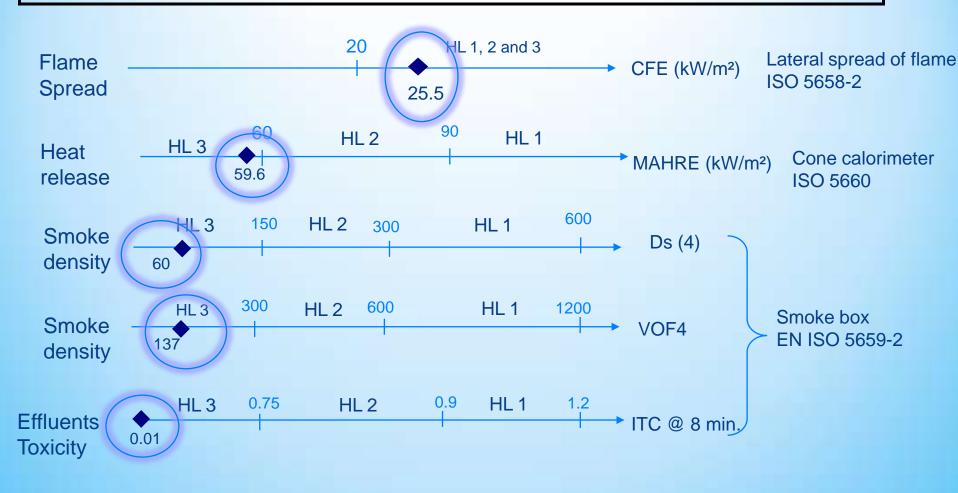
- EN 45545-2 describes three « Hazardous Levels » for wall and ceiling lining – R1 category, HL3, HL2 and HL1 from the most severe to the less
- Required rating level is defined according to the type of train (or metro or tramway) and its operation category

EN 45545

	Operation category			Type of train			
	Infrastructure	Evacuation	Line	Standard vehicle*	Automatic vehicle	Double-decked vehicle	Sleeper
1	Not determined by underground sections, tunnels and/or elevated structures	With means of safe side	Mainline, regional, urban & suburban		HL1		HL2
2	Determined by	evacuation	Urban & suburban		Н	L2	
3	underground sections, tunnels		Mainline & regional		HL2		HL3
4	and/or elevated structures	Without means of safe side evacuation	Mainline, regional, urban & suburban	HL3			

*: the term "train" also covers trams and metros

FIRST criteria according HLs and test methods



Requirements for each criteria for wall and ceiling lining – R1 category

Flame _ Spread		20	HL 1, 2 and 3	E (kW/m ²) Lateral spread of flame ISO 5658-2
Heat release	HL 3 60	HL 2	90 HL 1 ↓ MA	AHRE (kW/m²) Cone calorimeter ISO 5660
Smoke density	HL 3 150	HL 2 300	HL 1 600	(4)
Smoke _ density	HL 3 300	HL 2 600	HL 1 1200 VO	F4 Smoke box EN ISO 5659-2
Effluents Toxicity	HL 3 0.75	HL 2	0.9 HL 1 1.2 ↓ ITC	C @ 8 min. EN TS 45545-2 annex C

Evaluation of RTM molded coupons

Based on 4 mm thick laminates, made of FB 2330, FB I 81268 F and Rovicore FR 450 D3 450. Tested under EN TS 45545 cat. R1

Fire certificates for intumescent resin series

Country / Area	Standard	Rating	Panel	Official certificate	
-	EN 45545 (Railway)	HL 2	UPR ¹ laminate (20% glass, CSM 450)	CREPIM approval	
Europe		HL 3	GC ⁴ (400 μm) + UPR ¹ laminate (20% glass)		
France	NF P 92-507 (Building, Railway)	М1	UPR ¹ laminate	Yes	
	NF F 16-101 (Railway)	F1	(20% glass, CSM 450) with or without GC ^{4,5}	Yes	
Germany	DIN 5510 (Railway)	S4 SR2 ST2	(400μm)	Yes	
Spain	UNE 23727	M 1	GC ⁴ (1000 mm) + UPR ¹ laminate (30% glass) + TC ⁴ (1000 mm)	Yes	

1: FB H 81269 TF 2: FB P 81091 TF 4: FB 2220 gel coat 5: FB 2330 gel coat

Fire resistance has to be re-assessed with each intumescent resin version since process employed may have a great impact on fire resistance

Fire certificates for intumescent resin series

Country / Area	Standard	Rating	Panel	Official certificate
	BS 6853	Cat. 2	GC (1000 μm – double gelled) + UPR ¹ laminate (20%	Yes
UK	BS 476, Part 6	Class 0	glass)	Yes
	BS 476, Part 7	Class 1	GC (1000 μm) + UPR ¹ laminate (20% glass)	Yes
\langle	ASTM E 84	Class 1 FSI < 25 Smoke < 450	UPR ³ laminate (25% glass)	Yes
USA	ASTM E 162	FSI = 10		Yes
	ASTM E 662	compliant	LIPP1 Jaminata (10% glass)	Yes
	UL 94	UPR ¹ laminate (10% glass)	Yes	
	SMP 800 (Bombardier)	compliant		Yes

1: FB H 81269 TF 2: FB P 81091 TF 3: FB I 81268 F 4: FB 2220 gel coat 5: FB 2330 gel coat Fire resistance has to be re-assessed with each intumescent resin version since process employed may have a great impact on fire resistance

³/₄" thick plywood,
post applied with
intumescent gel
coat at 0.030".
Direct torched for
30 seconds

Note: No laminate, post applied gel coat only

Intumescent system Performance Advantages, especially versus Phenolic

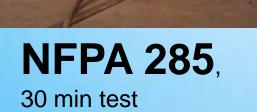
- Room temperature cure with peroxide initiators
- *f*Formaldehyde and water free No outgassing/porosity
- fNo acid catalyst needed no need for special tooling
- fNo 80°C cure or post cured required improved productivity
- *f*Longer material shelf life by 2-3X
- fImproved cosmetics with the gel coat
- *f*Improved mechanical properties
- Cost competitive with phenolic at similar specific gravity
- CMR and Halogen free
- Process friendly- Can be used in Hand Lay, Spray up, RTM, Bag Molding and Pultrusion. Infusion and Pre-preg ???

Theme Parks, Animated Figures

Stanford University Bing Concert Hall 842 seat Opened Jan. 2013

New Flyer Bus Photo courtesy Carlson Fiberglass, Winnipeg

Bombardier Transportation INNOVIA Monorail 300 system - 24-kilometre system in São Paulo, Brazil, will be the world's largest and highest capacity monorail (2016)



San Francisco Museum of Modern Art

- 10 stories tall, 125 meters long Facade
- 700+ FRP panels, roughly 1.8 meter by 10 meter each
- Saved 250 metric tons of steel over using GFRC
- NFPA 285 and 286 Approved Panels

HITEL SALE

The art

Thank You! / Obrigado!

