

PAM-FORM 2G 2013

Thermoforming of dry textiles and prepregs

July 23rd, 2013 Mathilde Chabin

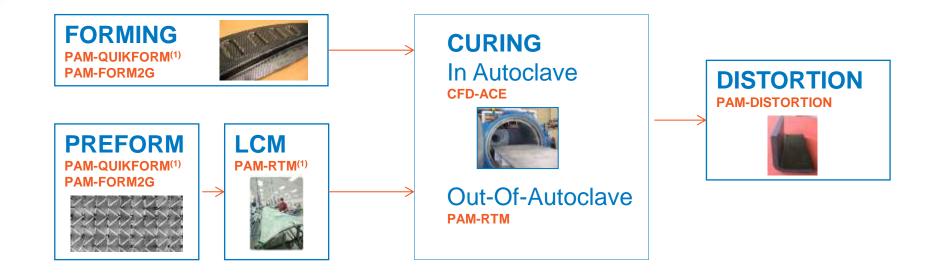
1

Copyright © ESI Group, 2012. All rights reserved.

Introduction to ESI Composites Manufacturing Suite

PAM-FORM 2G product presentation

References


Introduction to ESI Composites Manufacturing Suite

PAM-FORM 2G product presentation

References

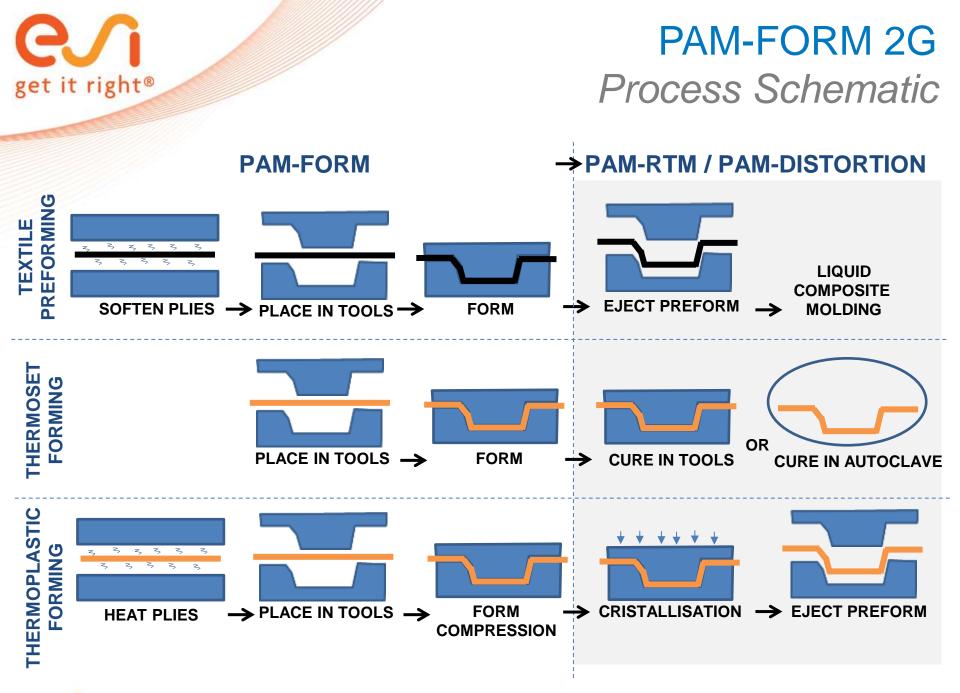
ESI Composites Manufacturing Suite

(1) Standalone version or CATIA V5 embedded

Note: ESI solution can use draping results from non-ESI applications as Fibersim, Composites Design by DS...

4

Courtesy: AAR, Cranfield University, EADS/M, ENISE

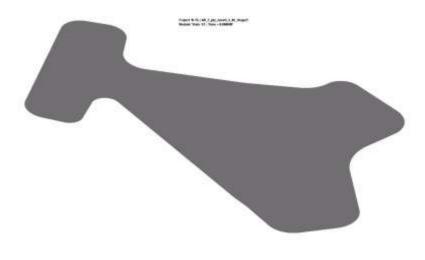


Introduction to ESI Composites Manufacturing Suite

PAM-FORM 2G product presentation

What is new in 2013 version

References


PAM-FORM 2G simulation What for?

To define and optimize:

- Forming strategy: stamping, thermoforming, diaphragm forming...
- Process parameters: tool velocity, holding system and force, temperature cycle, pressure cycle, material type and thickness for diaphragms...

Through the prediction of:

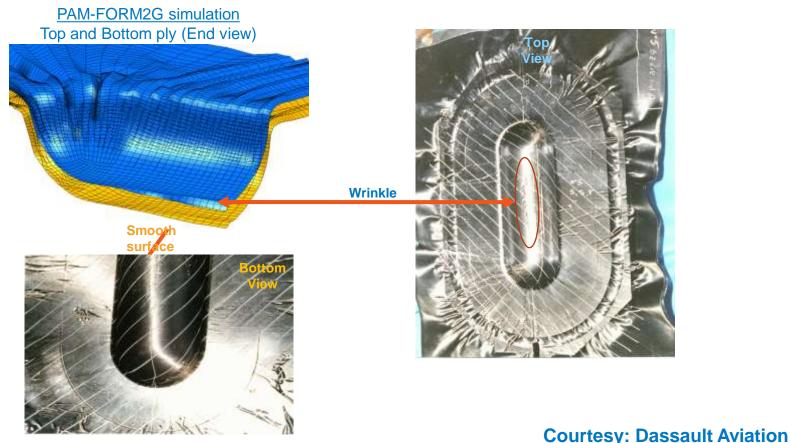
- Wrinkling
- Bridging
- Thickness
- Optimum flat pattern
- Final fiber orientation

Automotive B-Pillar

- With material models for NCF, UD and woven fabrics

www.esi-group.com

PAM-FORM 2G simulation Material data requirements


DEFORMATION MODE	REPRESENTATION	SIMULATION INPUT	COMMENTS
Fiber extension	← →	Young's modulus (E1, E2)	To be done for both fiber directions
Fiber buckling		Young's modulus = f(strain) (E1, E2)	To be done for both fiber directions
In-plane shear	v↓ v v	Force/Displacement (G)	To be done for positive and negative shear
Bending		Simulations for Bending Stiffness calibration (B1, B2)	To be done for both fiber directions
Compaction		Thickness = f(pressure)	Can be done for different shear angles
Sliding	, State P	Friction coefficient	Can be temperature, velocity and pressure dependent To be done between plies and between plies and tools
In-plane shear viscosity	t V	Viscosity	Can be temperature dependent

- Material data are needed for each ply of the laminate
- Data should cover temperature range of the process

C get it right®

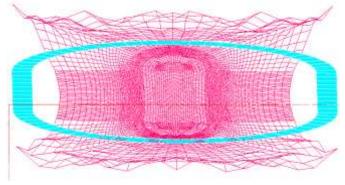
PAM-FORM 2G simulation Example 1: Wrinkling prediction

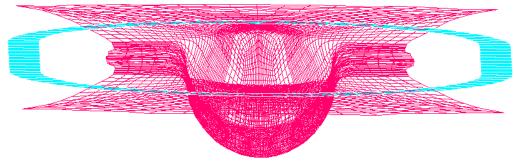
- UD thermoforming:
 - 20 plies of carbon unidirectional
 - thermoplastic matrix –APC2-AS4

www.esi-group.com

e get it right®

PAM-FORM 2G simulation Example 2: Process definition

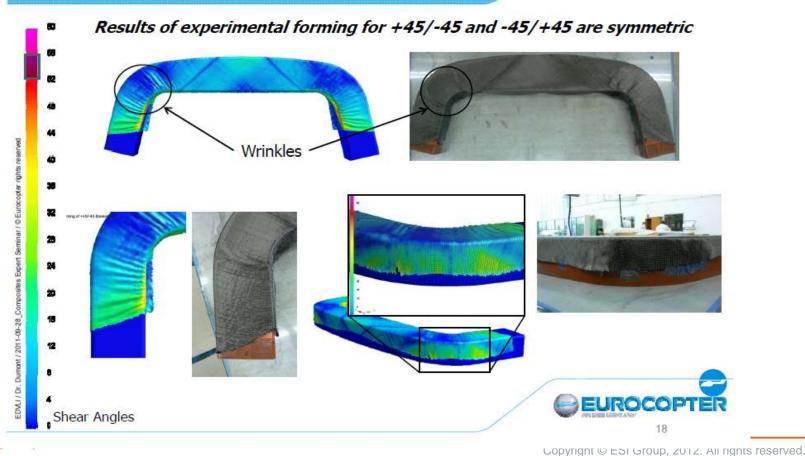

Woven fabrics thermoforming: impact of punch velocity



PAM-FORM 2G simulation Example 3: Material definition

Clamping system definitionLaminate definition

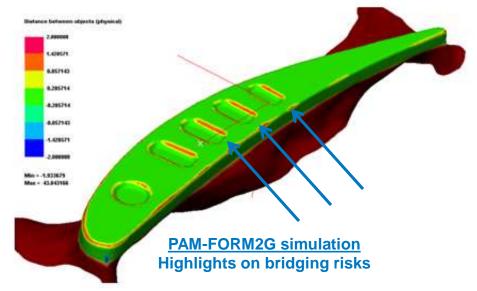
Courtesy: Dassault Aviation


www.esi-group.com

PAM-FORM 2G simulation Example 4: Shearing prediction on preform

thinking without limits

Forming – Results of ±45 NCF: Sh. angles



PAM-FORM 2G simulation Example 5: Bridging prediction

Fabric / 6 plies / PPS Matrix

Courtesy: Delft University of Technology

Introduction to ESI Composites Manufacturing Suite

PAM-FORM 2G product presentation

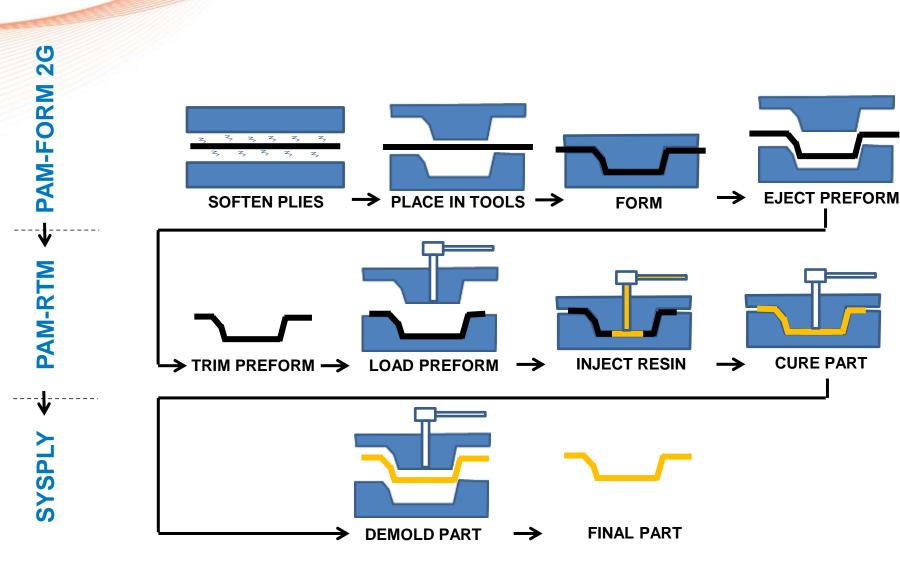
References

Some References

AUDI
Lamborghini
Bilcare
BMW
DLR
DOW
EUROCOPTER

- GE

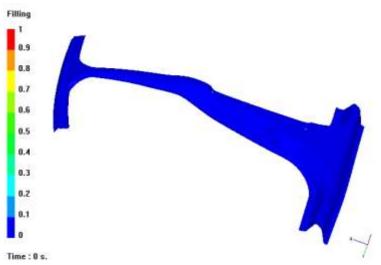
- Mercedes-Benz
- Letov
- Minoru Kasai
- NCC
- **-** VW
- Visteon


PAM-RTM 2013

Product presentation

www.esi-group.com

Liquid Composites Molding Process Schematic


Liquid Composite Molding simulation To do what and how?

To define and optimize:

- LCM strategy (RTM, CRTM, VARI...)
- Location of injection gates, vents and vacuum ports
- Size, type and location of flow media
- Temperature cycle

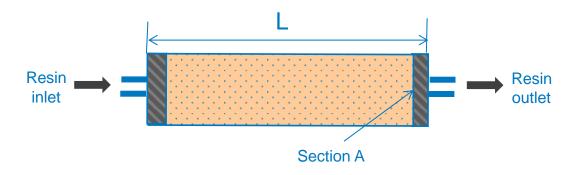
Through the prediction of:

- Filling and Curing time
- Dry spots
- Flow front velocity
- Pressure in the mold

B-Pillar injection

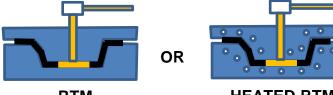
Taking into account

- Fiber angle variation (permeability variation) of the preform



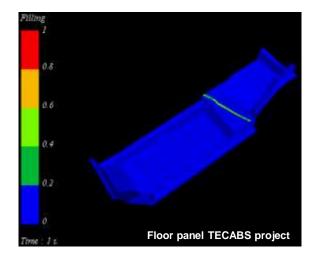
Liquid Composite Molding simulation PAM-RTM flow model

Resin flow in a porous medium using


DARCY'S LAW

$$q = \frac{Q}{A} = \frac{K}{\mu} \cdot \frac{\Delta p}{L}$$

Liquid Composites Molding Process variants with PAM-RTM


RTM: Resin Transfer Molding

RTM

HEATED RTM

Material data for simulation

	RTM	HEATED RTM (added data)
Reinforcement	Permeability tensor (K1,K2,K3) Constant OR f(shear angle)	Density Constant Specific heat Constant OR f(temperature) Thermal conductivity tensor (K1, K2, K3) Constant OR f(temperature) Effective conductivity tensor (K1, K2, K3) Constant OR f(temperature) OR f(temperature, degree of cure)
Resin	Density Constant Viscosity constant OR f(time) OR f(material age)	Viscosity f(temperature) OR f(temperature, degree of cure) OR User defined Specific heat Constant OR f(temperature) OR f(temperature, degree of cure) Heat conductivity Constant OR f(temperature) OR f(temperature, degree of cure) Enthalpy constant Curing Kinetics 5 models including Kamal-Sourour OR User Defined

get it right®

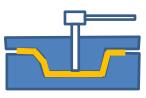
Liquid Composites Molding Process variants with PAM-RTM

VARI: Vacuum Assisted Resin Infusion

Material data for simulation (added data)

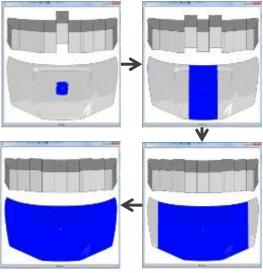
	VARI (added data)
Reinforcement	Permeability tensor (K1,K2,K3) f(fiber content) Compressibility curve Pressure of compaction=f(fibre content)

get it right®



Liquid Composites Molding Process variants with PAM-RTM

CRTM: Compression Resin Transfer Molding


PARTIAL MOLD CLOSURE \rightarrow INJECT RESIN

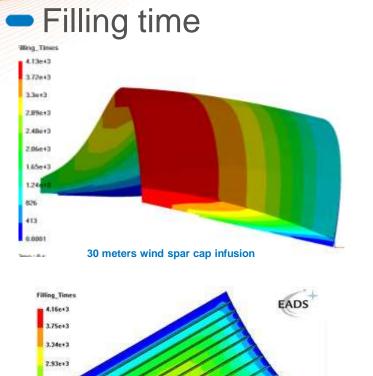
T RESIN -> COMPRES

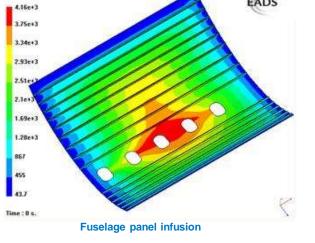
COMPRESSION STROKE

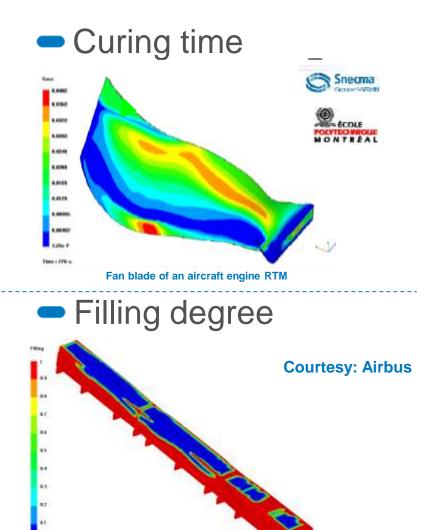
Material data for simulation

	CRTM
Reinforcement	Permeability tensor (K1,K2,K3) f(fiber content)

Automotive hood – A-CRTM Courtesy: CCHP of Ecole Polytechnique of Montréal

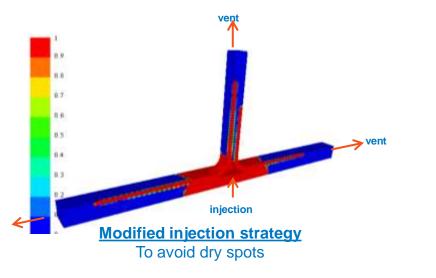

PAM-RTM simulation Post-Processing examples


\$1


8.7

8.1

100 : 045 s.

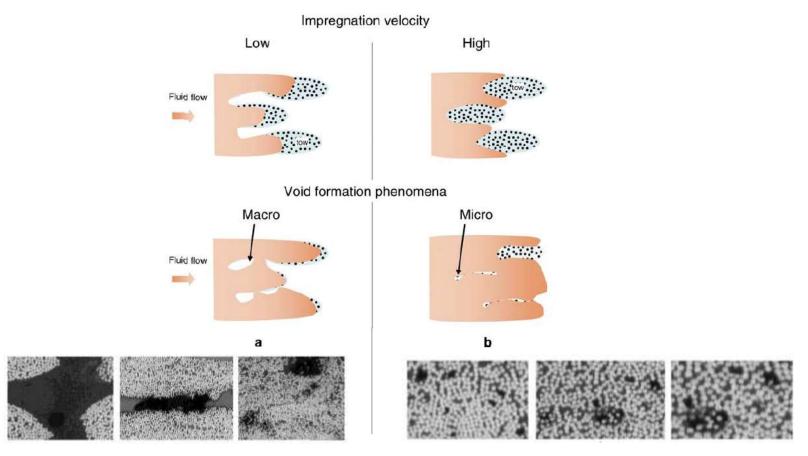


Dry spots

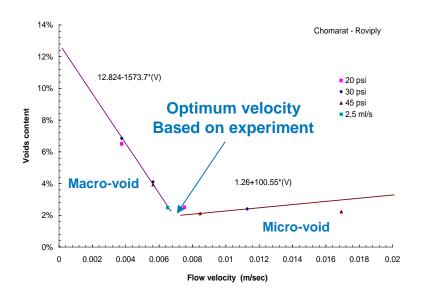
PAM-RTM simulation Post-Processing examples

Initial state injection Intermediate state injection Intermediate state injection Intermediate state Internet state Intern

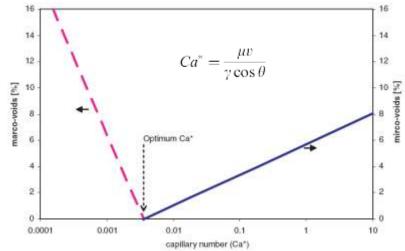
Final part


Courtesy: Cranfield University

www.esi-group.com


Porosity prediction and reduction:

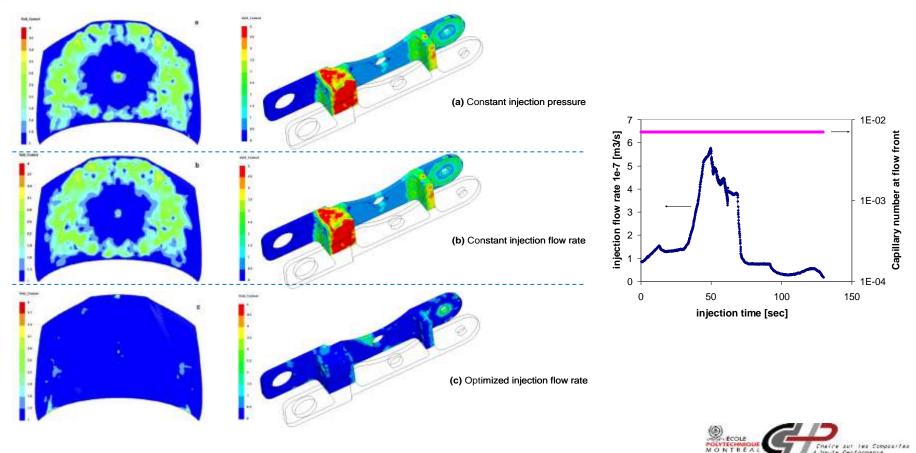
• Principle: Critical impregnation velocity: $\max \|\vec{v}_{front}\| \le \|\vec{v}_{crit}\|$

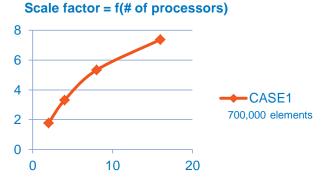


Porosity prediction and reduction: PAM-RTM input data:

Experimental data

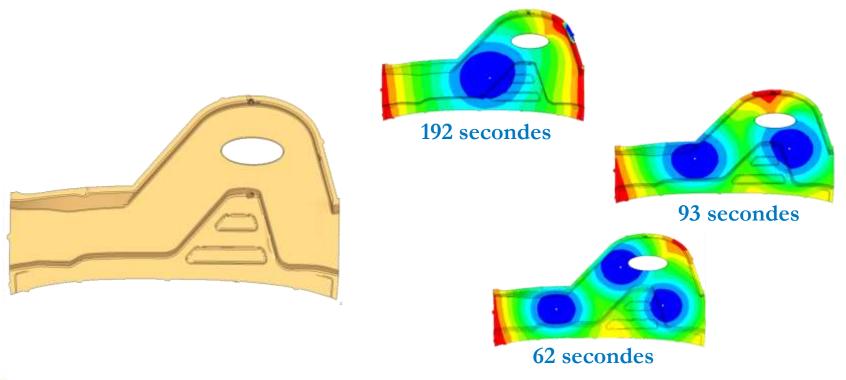
Ca= viscosity*velocity/surface tension/contact angle


PAM-RTM input curve


Porosity prediction and reduction:

PAM-RTM output: injection flow rate curve

- Trigger manager that allows conditional opening of the gates
- DMP solving capability that highly decrease the computation time when increasing the number of processors



Gravity effect on resin flow

One shot simulation (few seconds) for estimation of last points to be filled and filling time

Automatic estimate of injection point location

What's new in 2013?

Consolidation of DMP solver:

- Permeability as a function of shear angle
- Trigger manager
- Reporting improvements
- Results sampling on sensors
- Specific heat and effective thermal conductivity f(T, alpha)

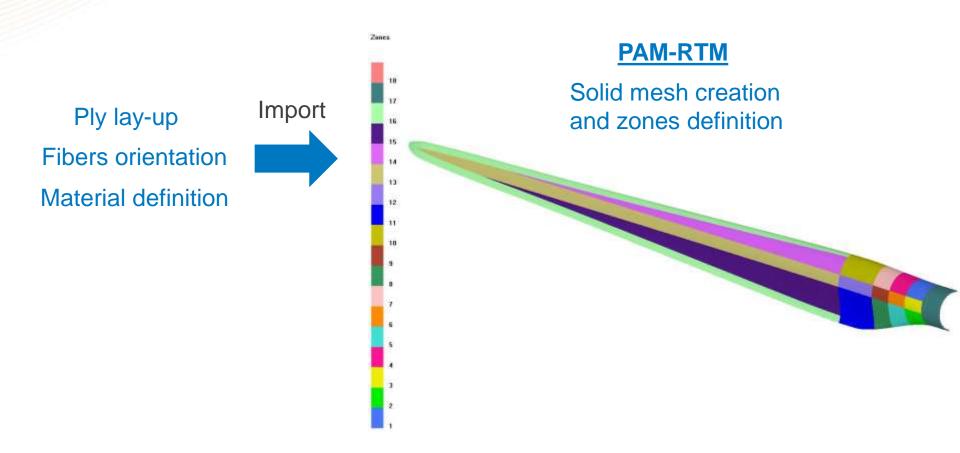
Liquid Composites Molding PAM-RTM permeability database

Based on Nottingham University data available on ESI customer portail: MyESI

HONE 1995 6 10000 1994	Inter sources	Search E
Announcomients ESI sared company of the year by the FACC Strong grants in 201011 annual results ESI Comp angulars Control Technology Cognications IP ESI will be the INAPERIS Used Congress 2011	Submitted by rech on Fri. 2012-83-23 13.47 PermeadARy tensor of the reinforcements in the main material data required for Liquid Composites Molding simulation as proposed by ESI with PAM-RTM software application. However, no normalization of the permeability measurements exist tudey and significant scatter in measured permeability values between laboratories are observed. In the first stage of an international benchmark exercise on the experimental determination of miniforcement permeability. It partners, implementing 16 different measurement techniques between them, compared in-plane permeability data for the examples of fabrics provided by HEXCEL. The larget of a second stage of this benchmark study, which is carrently on-going, is to aliminate success if scatter and lead to a standardization of measurement methods.	Upcoming training courses Aut for a Training
	Andy Long's Nam and especially Andreas Endraweit at Nottingham University who participates in that benchmark partnered with ESI Group composites team and is sharing non-confidential permeability values measured these last years at the University. A brief description of the measurement bench and procedures used at Nottingham University is available for download (Pintlingham methods).	
	The database will be continuously improved and completed with new data. For interpretation of the provided data. It is to be considered that there are currently no standards for permeability measurement, while observed trends, e.g. for the change in permeability as a function of the fibre volume fraction, are of general validity, application of different experimental methods may result in quantitative differences in absolute permeability values. For prediction of the most probable injection scenarios, it is important to take the provided standard deviations for the permeability values into account, which mainly reflect variability in material properties. The main purpose of the database is to provide a starting point to PAME/ITM users.	

Please make sure to regularly check this webpage for updates and add-ons.

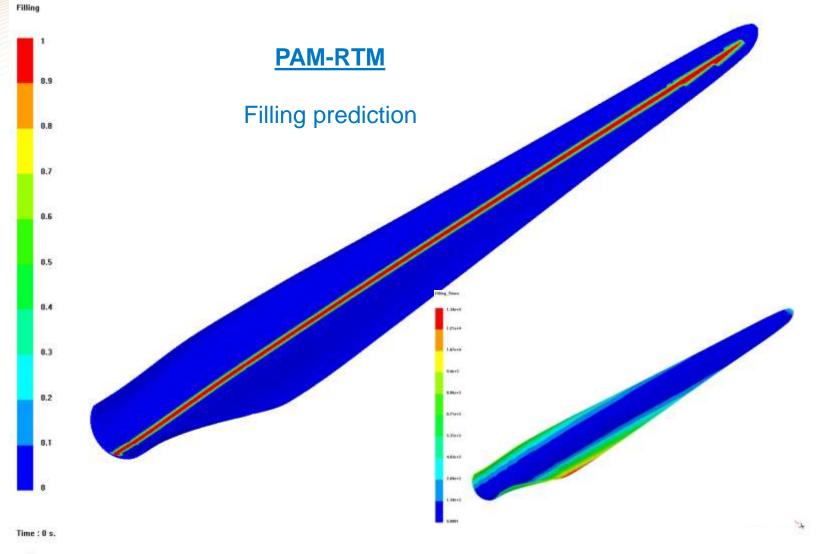
REINFORCEMENTS DATA


- CARDON 3il angle-interlock 12K.xlu
- · CARBON 3d urthogonal als
- · CARBON DOFP 24K 115 mm.sls.
- CARBON DCFP 24K 28 mm.sta
- CARBON DCFP 3K 28 mm x8x
- CARBON triax braid 0.45 xts
- CARDON triax braid 0 60 xts
- CARBON triax braid 0 70 xls
- CARR REIFORCEMENTS 38391.xts
- CHOMARAT Tissu Roving 9007 xts
- COTECH EBX 424.sts
- CS INTERGLAS 04367.sis
- CS INTERGLAS 91945.im
- CS INTEROLAS 92115.sbi
- CS INTERGLAS 92125.als
- FORMAX FGE 101.xh
- FORMAX FOE 104 als
- FORMAX FOE 105 HD.xls
- FORMAX FGE 117 adu
 FORMAX FGE 360 adu
 - CONTRACT CALL SHID MIL
- GLASS twill 3rd alle
 GLASS twill 888 alle
- HEXCEL 01113 1000 TF970.xbs
- HEXCEL 45330 D 1000.x0x
- · HEXCEL G0926 Inj E01 1F xits
- · HEXCEL G0906 1200 xts
- HEXCEL G1164 A1250 TCT.sls
- HEXCEL NEEDO HR 1270 0400 G-C1 xls
- OWENS CORNING ELPEI567.ats
- OWENS CORNING U 1148R1750558 UDIMAT.xis
- OWENS CORNING Unitie 750 450 xts

FLOW MEDIA DATA

· AIRTECH knitlow 105 HT als

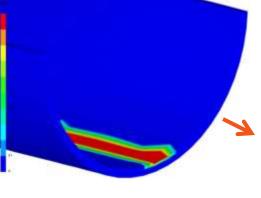
PAM-RTM simulation Workflow example (1/4)

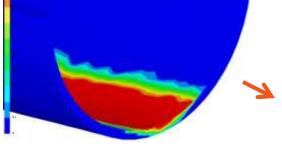

PAM-RTM simulation Workflow example (2/4)

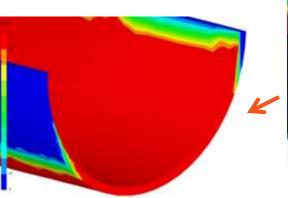
PAM-RTM

Inlet definition

Flow media definition


PAM-RTM simulation Workflow example (3/4)


get it right®


PAM-RTM simulation Workflow example (4/4)

PAM-RTM

Zoom-in on flow media influence on resin flow front

- Aston Martin
- BOMBARDIER
- BMW
- CCAT
- Dassault-Aviation
- DOW
- EADS
- GE R&D
- GE India Technology Center
- Hexcel
- M-Torres
- ONERA
- PPE

PAM-RTM Some References

- Snecma and Snecma Propulsion Solide (Safran Group)
- TECSIS, IPT, FURG, Unifei
- Volkswagen, VZLU
- Ecole des Mines, Ecole Polytechnique de Montréal, Ecole Polytechnique de Nantes, KU Leuven, Politecnico di Milano, Shanghai Jiaotong University, TU Clausthal, TU Delft, TU Munchen, University of Cranfield, University of Nottingham, Wichita State University...

http://www.esi-group.com/products/composites-plastics/pam-rtm/success-stories

