

APLICAÇÃO DA NANOTECNOLOGIA NA FABRICAÇÃO DE SELANTE DE POLIURETANO HÍBRIDO

Neide T. Barreiros - Mestranda da UNICAMP

Nelcy D. S. Mohallem, Laboratório de Materiais Nanoestruturados do DQ - UFMG.

EMPRESA PURCOM (CENTRO DE PESQUISAS)

Apoio das empresas

plataforma de soluções em poliuretano

sistemasdepoliuretano.

MERCADO DE ATUAÇÃO:

INDÚSTRIA;

CONSTRUÇÃO CIVIL;

ELETRÔNICOS;

EMBALAGENS;

HOSPITALAR;

MINERAÇÃO;

TRANSPORTES;

ESPORTES;

CENTRO DE PESQUISA PARA POLIURETANOS

Apoio das empresas



TIB KAT 218
TIB KAT 226
TIB KAT 424

TIB KAT 218 para os polímeros da Momentive e Wacker TIB KAT 226 e TIB KAT 424 para o MS da Kaneka

DISTRIBUIDORA NO BRASIL

Apoio das empresas

SELANTES A BASE DE POLIURETANO MS HÍBRIDO

SILICONES ALTA PERFORMANCE

ESPUMAS EXPANSIVAS

FABRICAÇÃO DE SELANTES

A fabricação de selantes tem passados por constantes alterações em seus processos produtivos, uma das tendências é a aplicação de novas tecnologias, em recentes estudos apontam a utilização de materiais nanométricos nas formulações para a melhoria de propriedades químicas, físicas e durabilidade dos selantes de poliuretanos.

HISTÓRIA DO POLIURETANO

Em 1849 Wurtz e Hoffmann divulgaram as primeiras pesquisas das reações de isocianato e um compostos hidroxílico.

Em 1937 Dr. Otto Bayer e colaboradores, na Alemanha tiveram a iniciativa de produzir poliuretanos a nível industrial com materiais isocianatos.

Na II guerra mundial houve a falta de borracha natural, então a tecnologia da poliuretana surge como alternativa para fabricação de vários produtos que é conhecida e estuda até atualidade.

SÍNTESE DE POLIURETANO


Os poliuretanos são formados através da reação de policondensação entre poliisocianato e poliálcoois, normalmente diisocianatos e diois. Formam o grupos uretanos.

TECNOLOGIA DE SELANTES

Pré-polimeros.

PRÉ-POLÍMERO SPUR

Selantes a base de poliuretano mono componente:

São formados por isocianato, poliol, aditivos e catalisador

Formando pré-polímeros silanizados.

$$\begin{array}{c|c} R \\ R \\ \hline R \\ R \end{array}$$

PRÉ-POLÍMERO MS

Pré-polímero MS foi desenvolvida no Japão pela empresa Kaneka.

Selantes a base de pré-polímero MS são reativos ao contato com o oxigênio.

PRÉ-POLÍMERO MS

Cura do selante:

Ocorre a cura do externo para o interno do material.

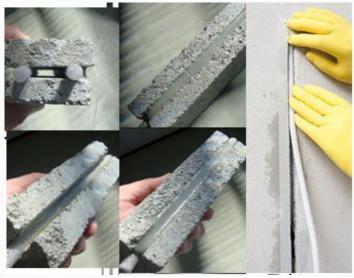
A cada 24 horas 2 a 3 mm.

Tecnologia de Selantes

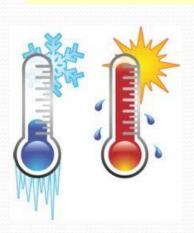
Definição de selante:

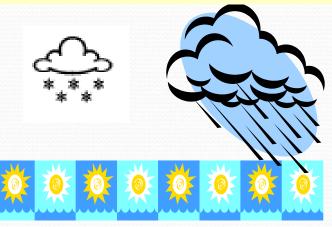
Uma substância capaz de unir ou selar dois tipos de materiais (metal, PVC, alumínio, concreto, madeira, granito, etc).

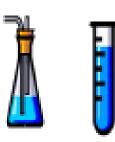
Selante é um material viscoso que muda o seu estado físico após a secagem para estado sólido formando um material com aspecto de borracha ou elástico.



Qual a Função do Selante?


Preencher espaços vazios formando uma barreira de proteção poeira, ar, gás, líquidos, fumaça e aparência ao local.


Selar dois substratos.



Influências climáticas, Sujidades, Ruídos.

COMPOSIÇÃO DO SELANTE

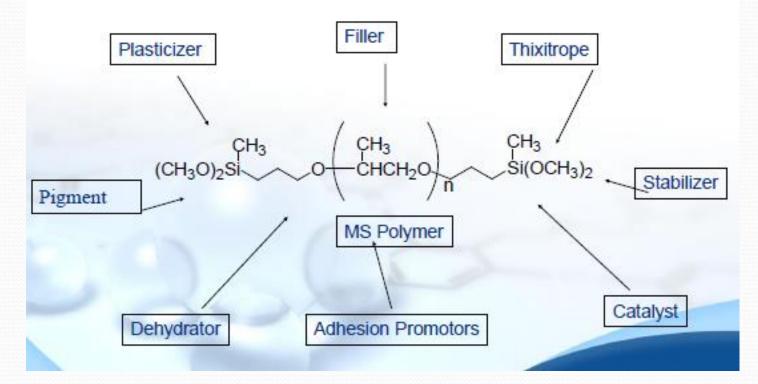
Materiais:

- Pré-polímero MS
- Plastificante
- Agente reológico
- Carbonato de cálcio (PCC)
- Aditivos (Agente silanos)
- Catalisador TIB 226
- Pigmentos
- Nanocarbonato de cálcio (NPCC)

FORMULAS BASICA DE SELANTE HÍBRIDO

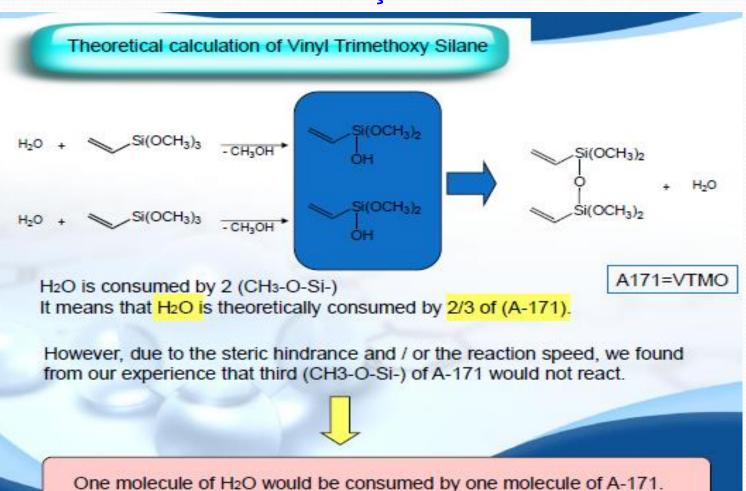
	Product name	Weight (phr)	
MS Polymer	S303H	70	
	S203H	30	
Plasticizer	Jayflex DIDP	90	
Filler	UltraPflex	160	
	Hubercarb Q3T	54	
Pigment	Ti-Pure R902+	20	
Rheology modifier	Crayvallac SL	2	
Stabilizer	Tinuvin 328	1	
	Tinuvin 770	1	
Dehydration agent	Dynasylan VTMO	3	
Adhesion promoter	Dynasylan DAMO-T	3	
Catalyst	Neostann U-220H	2	
	Total	436	
	Polymer content (%)		

TIB 226



MATERIAS PRIMAS PARA FORMULAÇÃO DE SELANTES

Typical MS Adhesive/Sealant Formulation


Introdução MS Polymer Kaneka

CÁLCULO PARA A UTILIZAÇÃO DO SILANO 171

Introdução MS Polymer Kaneka

FASE 1

Equipamento planetária para Mistura dos materiais RPM (1500 – 1900)

Pré-polímero MS Óleo plastificante **NPCC Pigmentos**

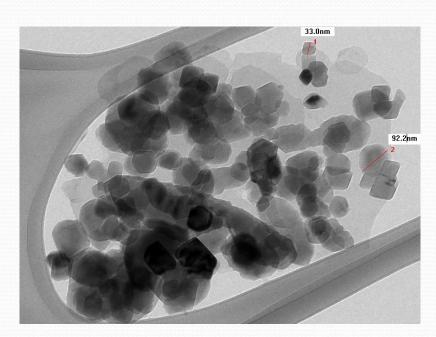
FASE 2

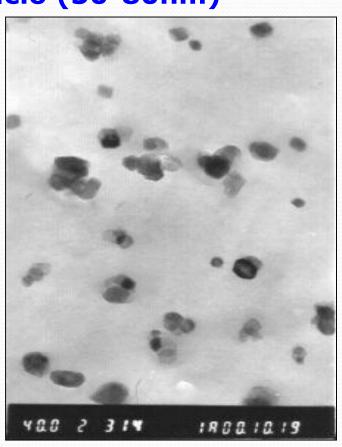
ADICIONAR CARGAS MINERAIS **ADITIVOS**

SILANOS CATALISADOR

FORMAÇÃO DE PASTA HOMOGENIA

SISTEMA DE VACUO





NanoCarbonato de Cálcio (50-80nm)

Dispersão de NPCC

FORMULAS TESTADAS

Denominação	Padrão (%)	c/3% NPCC	c/15% NPCC
Pré-polímero	20 - 30%	20 - 30%	20 - 30%
PCC	40 - 60%	40 - 60%	40 - 45%
NPCC		3 - 5 %	10 - 15%
Aditivos	10 - 20%	10 - 20%	10 - 20%
Total	100%	103%	105%

Obs.: Outros materiais mantiveram suas concentrações.

PROPRIEDADES

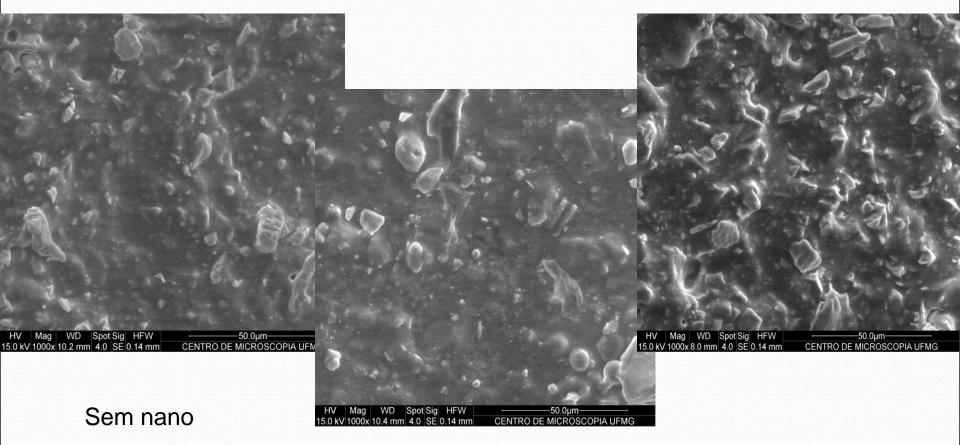
Densidade Tempo de película (tack-free)

Tração **Alongamento Dureza MEV**

RESULTADOS

Propriedades	Padrão	c/3% NPCC	c/15% NPCC
Densidade (g/cm3)	1,50	1,40	1,25
Tack-free (min)	60	45	30
Tração (N/mm)	9,0	12,0	20,0
Alongamento (%)	300	450	700
Módulo (MPa)	1,5	0,7	0,3

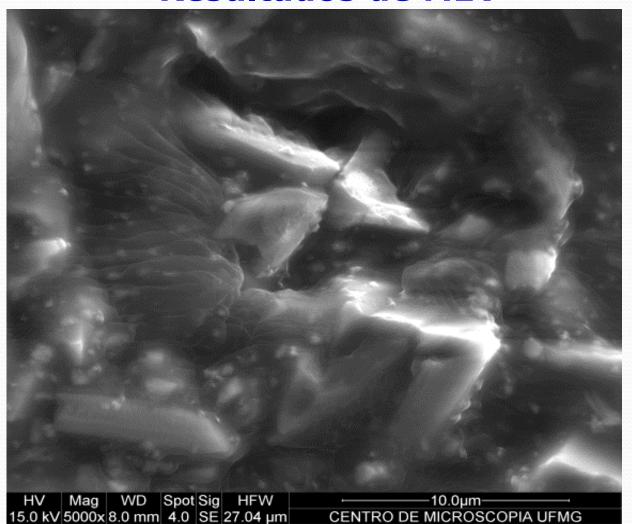
RESULTADOS TESTE PEEL



MEV Microscopia eletrônica de Varredura

RESULTADO DO MEV

CENTRO DE MICROSCOPIA UFMG


HV Mag WD Spot Sig HFW 15.0 kV 10000x 10.4 mm 4.0 SE 13.52 μm

Resultados de MEV

15 % nano

Conclusões:

- >NPCC melhora as propriedades do selante de PU.
- >NPCC reduz a densidade do selante de PU.
- ➤ Há necessidade de ajustar a proporção de PCC:NPCC.
- O agente reológico deve ser adicionado à temperatura ambiente.

Conclusões:

- ➤ O NPCC auxilia na esfoliação do PCC.
- É importante presença de agentes silanizados.
- ➤ Tanto o PCC quanto o NPCC devem estar revestidos com ácidos graxos ou ácidos poliméricos.
- ➤ Redução de custo.

Referências Bibliográficas

- 1 BARREIROS, N. T., "Selantes de Poliuretano", Curso ministrado no Inst. Avançado de Plásticos SBC/SP. Maio/2013.
- 2 RIBEIRO, F. A., "Especificação de Juntas de Movimentação em Revestimentos Cerâmicos de Fachadas de Edifícios". Dissertação USP. Julho/2006.
- 3 MARQUES, J. L. S., "Desenvolvimento de Adesivos Nanocompósitos de Poliuretano à Base de Óleo de Mamona". Dissertação PPGEM, UFRGS. 2009.
- 4 NETO, J. R. A. et al. "Influência da Adição de uma Carga Nanoparticulada no Desempenho de Compósitos Poliuretanos / Fibra de Juta". Polímeros: Ciência e Tecnologia. Vol. 7, nº1, p. 10-15, 2007.
- 5 WU, J. et al, "Flame Retardant Polyurethane Elastomer Nanocomposite Applied to Coal Mines as Air-Leck Sealants". Journal of Applied Polymer Science, 2013.
- 6 ZHANG, J. et al, "Preparation and Characterization of Nano/Micro Calcium Carbonate Particles/Polypropylene Composites". Journal of Applied Polymer Science, Vol. 119, p. 3560-3565, 2011.

Referências Bibliográficas

- 7 CANEVAROLO JR, S. V. Ciência dos Polímeros: um texto básico para tecnólogos e engenheiros.
- 1.ed. São Paulo. ArtLiber Editora, 2002.
- 8 PANDOLFELLI, V. C.; OLIVEIRA, I.R.; STUDART, A. R. e PILEGGI, R. G. Dispersão e empacotamento de partículas. Princípios e aplicações em processamento cerâmico. São Paulo. Fazendo Arte Editorial, 2000.
- 9 –X ANTHOS, M. Functional fillers for plastics. 2. ed. [S.I.]: WILEY-VCH Verlag, 2005.

Contato para consultoria

Neide Barreiros

Email: neidetbarreiros@gmail.com

Tel. (11) 9 8571-5274 (11) 4392-4158

OBRIGADA!!!