# FEIPUR 2018

**Rigid Technical Seminar** 

Dr. Jörg Diendorf



# 4<sup>th</sup> generation blowing agents: Chances and Challenges with HFOs



# **Alternative Blowing Agents for HCFC-141b Replacement**

| Blowing Agent                         | Advantages                                          | Disadvantages                                                           |
|---------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| Water + Isocyanate (CO <sub>2</sub> ) | Availability, low price, non-flammable              | Bad thermal insulation, high MDI consumption, formulation challenges    |
| Hydrocarbons                          | Good thermal insulation, low price, availability    | Highly flammable, high investment costs                                 |
| HFCs                                  | Good thermal insulation, non-flammable              | Limited availability (regulated, phase-out due to high GWP), high price |
| HFOs                                  | Good thermal insulation, low GWP/ODP, non-flammable | High price, formulation challenges, chemical degradation possible       |
| Methylal                              | Low price, good insulation value                    | Flammable, formulation challenges                                       |
| Methyl Formate                        | Low price, good insulation value                    | Flammable, formulation challenges                                       |



# 4<sup>th</sup> Generation Blowing Agents: HFO-1233zd(E)

Chemical name: trans-1-chloro-3,3,3-trifluoropropene; 1233zd(E)

Two suppliers on the market:

Honeywell
Solstice LBA

("Liquid Blowing Agent")

Forane FBA 1233zd

HFO-1233zd(E)

- Non-flammable, BP = 19 °C, molecular weight = 130.5 g/mol
- Low Global Warming Potential (GWP), zero Ozone Depletion Potential (ODP)
- Good thermal insulation properties
- Can cause system stability issues due to catalyst/surfactant reactions
- More soluble in some polyols than 245fa may impart plasticization effect
- Globally good availability



# 4<sup>th</sup> Generation Blowing Agents: HFO-1336mzz



HFO-1336mzz-Z

- Chemical name: (Z)-1,1,1,4,4,4-Hexafluoro-2-butene 1336mzz-Z
- Supplier: Chemours Opteon 1100 (formerly known as Formacel FEA-1100)
- Non-flammable, BP = 33 °C, molecular weight = 164 g/mol
- Low Global Warming Potential (GWP), zero Ozone Depletion Potential (ODP)
- Good thermal insulation properties
- Stable in PU polyol side; but higher cost-in-use compared to HFO-1233zd(E)
- Good solubility in polyol may impart plasticization effect
- Availability still limited, but supplier is working intensely on production capacities



# 4<sup>th</sup> Generation Blowing Agents: HFO-1234ze

• Chemical name: 1,3,3,3-Tetrafluoropropene; 1234ze

• Supplier: Honeywell Solstice GBA ("Gaseous Blowing Agent")

- Non-flammable, BP = -19 °C, molecular weight = 114 g/mol
- Low Global Warming Potential (GWP), zero Ozone Depletion Potential (ODP)
- HFO-1234zeGood thermal insulation properties
  - Severe system stability issues in PU resin side
  - Good solubility in polyol may impart plasticization effect
  - Globally available
  - Application in OCF and other pressurized PU applications



# 4<sup>th</sup> Generation Blowing Agents: Opteon 1150



Supplier: Chemours Opteon 1150

- Non-flammable, BP = 7.5 °C
- Low Global Warming Potential (GWP), zero Ozone Depletion Potential (ODP)
- Good thermal insulation properties (slightly worse than Opteon 1100; 11.5 vs. 10.7)
- Can be used separately or in blends with other blowing agents
- Can improve low temperature\* insulation performance, if used as co-blowing agent
- Not yet available on the market, limited information so far



Opteon 1150



# 4<sup>th</sup> Generation Blowing Agents: Pros & Cons

Most common options at the moment: **Honeywell** Solstice LBA & **Chemours** Opteon 1100



Both molecules are established in technical applications and on the market globally and will probably play the major role in the future as 141b replacement.

#### Summary of advantages:

- Low thermal conductivity
- In general good compatibility with most resins
- Environmental-friendly
- Not flammable



#### Some possible issues:

- High solubility → Can act as plasticizer + high use level
- Formulation challenges with Opteon 1100: In some cases compatibility is limited/High selectivity for surfactants
- Formulation challenges with Solstice LBA: Shelf life issues
- Relatively high molecular weight (>> high use level) combined with high price leads to high costs (but this must always be seen in comparison to 245fa, which is also a heavy molecule and quite expensive)

# 4th Generation Blowing Agents - Relevant Insulation Applications

#### **Appliance**



- In most cases formulated systems
- Shelf life (typical range 0-6 months)
- System solubility & flowability
- Thermal insulation properties (λ-value)

#### Panels (PUR & PIR)



- In many cases formulated systems but tendency decreasing towards self formulation
- Shelf life (typical range 0-6 months)
- FR performance
- Thermal insulation properties (initial & aged λ-value)

#### **Closed Cell Spray Foam**



- In most cases formulated systems
- Shelf life (typical range 6-12 months)
- Dimensional stability
- FR performance
- Thermal insulation properties (λ-value)



# 4<sup>th</sup> Generation Blowing Agents – Differences In Formulation & Application

#### **Polyol-Side Stability**



- **Formulation** 
  - system miscibility & compatibility upon change of blowing agent
  - potential additive variation to meet application & properties
- Storage & Transportation
  - shelf-life should fit application needs

#### **Application**



- Different boiling-point
  - Heat-reaction differences
  - Different reaction-profile
- Flammability during application
- Sprayability
- Different viscosity

#### **Foam Properties**



- Foam appearance (e.g. surface, cells, foam defects, collapse)
- Dimensional stability (e.g. shrinkage, post expansion)
- Foam adhesion
- FR properties
- Thermal conductivity
- Lambda aging



# 4th Generation Blowing Agents: HFO-1233zd **HFO Degradation Mechanism**

- Polyol blend formulation is the key step to successful HFO application in all cases. The biggest challenge for HFO-1233zd applications is the polyol-side shelf life stability
- Wrong polyol-side formulation may lead to HFO & silicone surfactant degradation over time



Potential aging consequences:

Processing issues due to blocking of catalysts (decreasing reactivity) and decomposition of silicone surfactant (coarse cells or even foam collapse)

→ deterioration of foam performance (insulation efficiency) upon storage of system blend



# 4<sup>th</sup> Generation Blowing Agents: HFO-1233zd **Surfactant Degradation Mechanism**

- Acids (e.g. H<sup>+</sup> or NR<sub>4</sub>+F<sup>-</sup>) catalyze the cleavage of Si-O-Si bonds within the siloxane chain
- Breakdown of the siloxane backbone results in loss of stabilization potency
- Degradation products are lower molecular weight siloxanes, esp. cyclic compounds like octamethyl cyclotetrasiloxane "D4"

"back-biting"





# 4th Generation Blowing Agents: HFO-1233zd Influence of Aging on System Reactivity

#### Rate of Rise Profile





—Initial



# 4<sup>th</sup> Generation Blowing Agents: HFO-1233zd Strategies to Avoid Shelf Life Problems

- 1. Low storage temperature, short storage time or do not use fully formulated system, but blend system daily (day tank) (or use third line to dose blowing agent)
- 2. If only coarse cell problems occur:
- → Use more surfactant
- → Use more resistant surfactant

If a system is aged and coarse cells occur, sometimes adding additional surfactant can bring

the system back to good quality



→ Use different catalyst package



- 4. Try co-blowing approach to lower HFO-1233zd concentration (e.g. blending with pentanes, more water...)

  But be careful: More water sometimes accelerates the degradation process
- 5. Work on the polyol composition (ask your system house and/or work with the HFO supplier!)



# 4th Generation Blowing Agents: HFO-1233zd Influence of Aging on System Reactivity

#### Rate of Rise Profile





—Initial



# 4th Generation Blowing Agents: HFO-1233zd Influence of Aging on System Reactivity







## Optimizing the Catalyst Package for Appliance and Discontinuous PUR Panel Formulations Blown With HFO-1233zd

#### POLYCAT® 218, POLYCAT® 211, and DABCO® TMR-18

containing Appliance/Panel PUR formulation exhibit significantly improve stability with HFO-1233zd blowing agent in stability studies

**Processing:** Improved front end reactivity with balanced reaction profile yields and improvement in flow-ability without effecting post expansion and de-mold times

| Initial Foams<br>containing HFO-<br>1233zd€ | PC5/PC8/PC41 | PC218/PC211/TMR-18 |
|---------------------------------------------|--------------|--------------------|
| Min fill density (pcf)                      | 2,00         | 1,95               |
| Core density (pcf)                          | 1,88         | 1,83               |
| 3 min post expansion (in)                   | 0,0670       | 0,0790             |
| K-factor                                    | 0,128        | 0,124              |
| K-factor Δ (top-bottom)                     | 0,007        | 0,001              |



**Thermal Properties:** Improving the front end reactivity also produces finer cell structure, yielding an improvement in thermal properties with a tighter gradient.

**Physical Properties**: Using a catalyst package of PC218 / PC211 / TMR-18 yields no change in physical properties with a reduction in core density.



# Catalyst Stability in HFO-1233zd-Blown Formulations



- Appliance & Disconti panel formulations containing HFO-1233zd have unique formulating challenges
  - Water / HFO Concentration
  - Resin side alkalinity
  - Reactivity Times
  - Processing Conditions
- Due to higher reactivity times, more stable catalysts are required.



# Additives for HFO-Blown Appliance & Discontinuous Panel Formulations

Relatively short to medium storage time requirements in appliance, medium storage requirement demand in discontinuous panel applications

| Surfactant recommendations |                                                                                                     |  |
|----------------------------|-----------------------------------------------------------------------------------------------------|--|
| Surfactant                 | Remarks                                                                                             |  |
| TEGOSTAB® B 84205          | Good choice for HFO blown formulations with sufficient compatibility; resulting in low lamda values |  |
| TEGOSTAB® B 8491           | Balanced performance and high stability against chemical degradation                                |  |
| TEGOSTAB® 84210            | Recommended for HFO blown systems with challenging compatibility; good FR properties                |  |

| • | Recommended as high resistancy surfactant. |
|---|--------------------------------------------|
|   | Alternative for panels:                    |
|   | B 8485                                     |

| Catalyst recommendations |               |                               |
|--------------------------|---------------|-------------------------------|
| Blow Catalyst            | Gel Catalysts | Cure Catalysts                |
| POLYCAT® 218             | POLYCAT® 211  | DABCO® TMR 2                  |
|                          |               | DABCO® TMR 3 (delayed action) |

For HFO-1336mzz a standard catalyst package is working fine in many cases (e.g. PC5/PC 8/PC 41).



### **Additives for HFO-Blown Continuous Panel Formulations**

| Surfactant recommendations |                                               |
|----------------------------|-----------------------------------------------|
| Surfactant                 | Remarks                                       |
| TEGOSTAB® B 84501          | Mitigates formulation challenges with HFOs    |
| TEGOSTAB® B 84512          | Well-balanced performance, supports foam flow |

| Catalyst Recommentations |               |                         |
|--------------------------|---------------|-------------------------|
| Blow Catalyst            | Gel Catalysts | Trimerization Catalysts |
| POLYCAT® 5               | POLYCAT® 36   | DABCO® TMR 12           |
| DABCO® BL 11             | POLYCAT® 34   | KOSMOS® 70 LO           |
|                          |               | KOSMOS® 45 MEG          |

As in most cases the blowing agent is streamed directly into the mixing head (no fully blended system, no shelf life issues), standard catalysts are being used.



# **Additives for HFO-Blown Spray Foam Formulations**

| Surfactant recommendations |                                                                               |  |
|----------------------------|-------------------------------------------------------------------------------|--|
| Surfactant                 | Remarks                                                                       |  |
| TEGOSTAB® B 84711          | Suitable for HFO blown systems with high solubility demand; strong FR support |  |
| TEGOSTAB® B 84715          | Dedicated for HFO-1336mzz blown systems                                       |  |
| TEGOSTAB® B 84704          | Creates smooth foam surface and a very regular cell structure                 |  |

| Catalyst recommendations for HFO-1233zd |                               |  |
|-----------------------------------------|-------------------------------|--|
| Catalyst                                | Remarks                       |  |
| POLYCAT® 218                            | Blow catalyst                 |  |
| POLYCAT® 203                            | Gel catalyst                  |  |
| DABCO® MB 20                            | Cure Catalyst (Bismuth based) |  |
| DABCO® 2040                             | Gel Catalyst                  |  |

For HFO-1336mzz a standard catalyst package is working fine in many cases (e.g. PC5/PC 8/PC 41).



