

How Supply Chain Collaboration can accelerate the Adoption of Thermoplastic Composites in Aerospace

Winand Kok MSc – Director Expert Services

Toray Group Snapshot

Materials can change our lives

- Possibilities, turning seawater into drinking water, reinforcing genetic analysis for medical breakthroughs, furthering the evolution of ecocars, producing plant-based functional clothing, extending the shelf life of food for reduced waste, and creating a world where everyone can achieve their personal best.
- Materials have the power to do all of this and more, because materials make our modern world. The world is full of possibilities and our materials can change the world, which we will never stop believing.

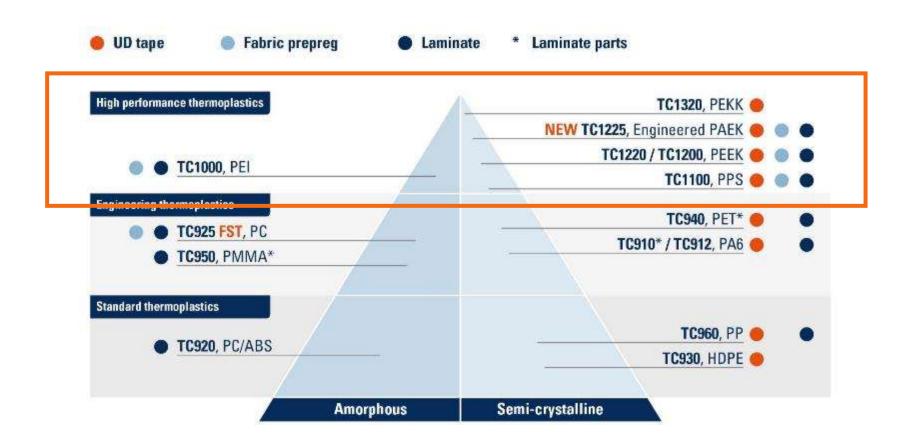
Fibers & Textiles	Performance Chemicals	Carbon Fiber Composite Materials	Environment & Engineering	Life Science & Other Businesses

TenCate Advanced Composites Snapshot

A division of the Toray Group

- Largest supplier of ultra pure / low dielectric prepregs for commercial aerospace SATCOM, military and shipboard radome structures.
- Key supplier of epoxy prepregs to the general aviation, launch vehicles, helicopter programs and UAV industries
- The leading supplier of high modulus advanced composites for satellite structures.
- Primary supplier of thermoplastic-based composites for commercial aerospace structural and interior applications under the TenCate Cetex[®] brand.
- Key provider of composite tooling prepregs under TenCate AmberTool[®] brand.
- Provider of chopped fiber compression molded parts with internal tool design and part fabrication capabilities.
- Supplier to high end industrial applications including F1, niche automotive, sport footwear and recreational.

Global Footprint



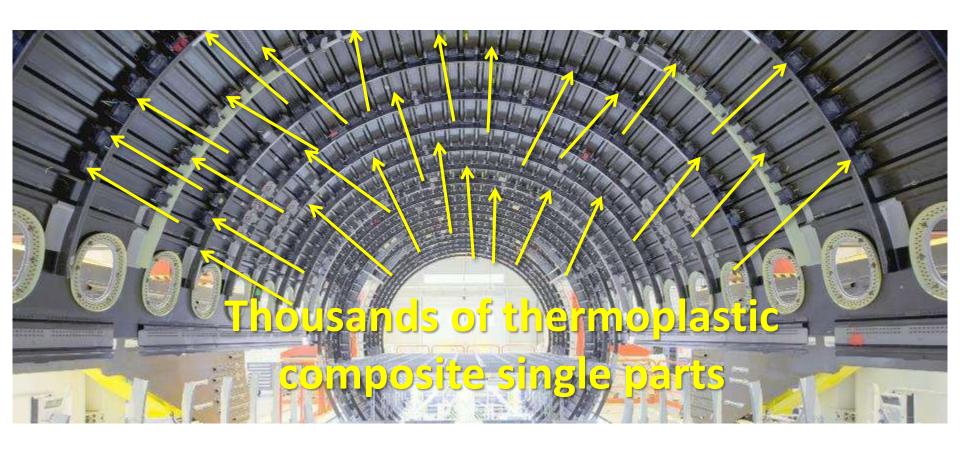
High Performance Thermoplastic Composites

TenCate product line depth along the performance pyramid

Cetex® Thermoplastic Composites

Aerospace grades

Product	Resin	Crystalline / amorphous	Toughness	Temperature	Comments
TC1000	PEI	Amorphous	Very high	Tg: 215°C	 Excellent fire, smoke and toxicity properties Good for interiors Limited solvent resistance
TC1100	PPS	Semi-crystalline	Good	Tg: 90°C	 Excellent solvent / moisture resistance Excellent fire, smoke and toxicity performance
TC1200	PEEK	Semi-crystalline	High	Tg: 143°C Tm: 343°C	 Very good moisture / solvent resistance Excellent fire, smoke and toxicity performance
TC1320	PEKK	Semi-crystalline	High	Tg: 162°C Tm: 331°C	 Very good moisture / solvent resistance Excellent fire, smoke and toxicity performance
TC1225	LMPAEK	Semi-crystalline	High	Tg: 147°C Tm: 303°C	 Very good moisture / solvent resistance Lowest processing temperature compared to PEEK or PEKK Similar to PPS processing temperature Excellent for injection overmolding applications with PEEK



Airbus A350 fuselage clips – thermoformed C/PPS laminates

Courtesy: Airbus

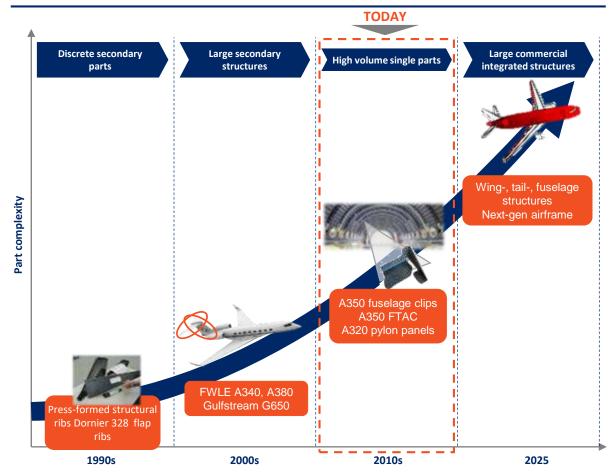
7

ADVANCED COMPOSITES

Airbus acoustic engine liner – slit, punched and welded C/PEI tapes

Gulfstream rudder/elevator – thermoformed C/PPS ribs welded in autoclaved skins

Airbus A320 rear pressure bulk head – thermoformed and welded C/PPS


the fulues

Production Technology in Augsburg, Premium AEROTEC is underway to shape.

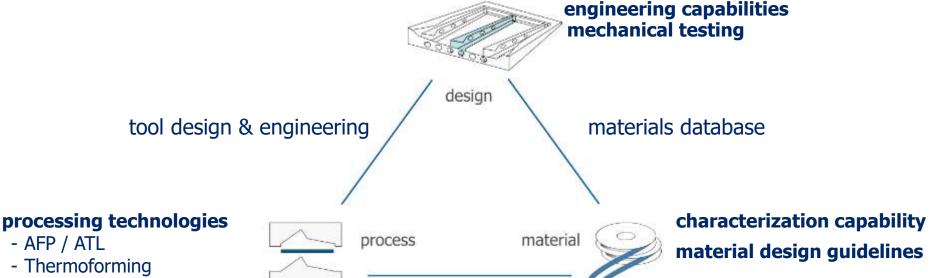
Thermoplastic Composites are not new

Evolution of TP usage

Commentary

- Modern aircrafts already consist of more than 50% of composite materials
- Share of thermoplastic composites is expected to increase significantly in the next few years
- ✓ OEMs are conservative in material adoptions given long product life cycles, risks and regulations associated with commercial aviation
- Airbus and Boeing initially started to use thermoplastics on small pieces and secondary structures
- As OEMs and plane manufacturers become more familiar with thermoplastics, usage is moving into more complex parts, welded assemblies and primary structures

OEM's about Thermoplastic Composites


... recent quotes

- > Klaus Richter, Chief Procurement Officer Airbus, AviationWeek, Oct. 15-28
 - "Long-sought silver bullet"
 - "Thermoplastics are super elegant"
- Tia Benson Tolle, Director of Advanced Materials, Product Development, Boeing Commercial Airplanes, ITHEC2018 conference, Oct. 30-31
 - "... need head, hands and heart to realize the potential of thermoplastic composites"
- the OEM's believe in the potential of thermoplastic composites but they are also aware that still much work has to be done to fully realize this potential in time for large scale applications on their next generation aircraft.

"Solving the Thermoplastic Composites Puzzle"

Courtesy: TPRC

- Autoclave / Out-of-Autoclave

- Injection overmolding

- Welding

- Continuous Compression Molding

- Recycling

process simulation /optimization material – process interaction

..... too many (unknown) pieces to solve the puzzle alone

Need for Value Chain / Supply Chain Collaboration

Collaboration and alignment in the value chain (supply chain) is needed to accelerate the development and to realize sufficient critical intellectual mass to make thermoplastic composite technology a success.

Key Terms

- Collaboration
- Alignment
- Acceleration
- Critical Intellectual Mass (.... people: engineers, researchers)
- > Example Initiatives: TPRC, TAPAS, SPIRIT

TPRC

ThermoPlastic composites Research Center (2007....)

CORIOLIS

Equipment & Software

Scientific Understanding

Materials

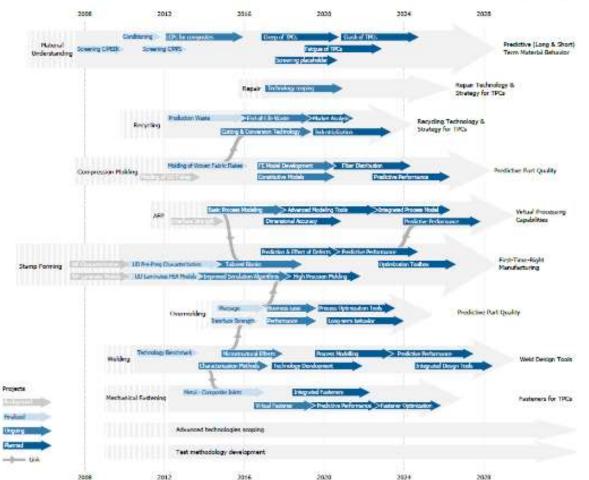
Sub-Structures

Aircraft

UTC Aerospace Systems

www.tprc.nl

- 1

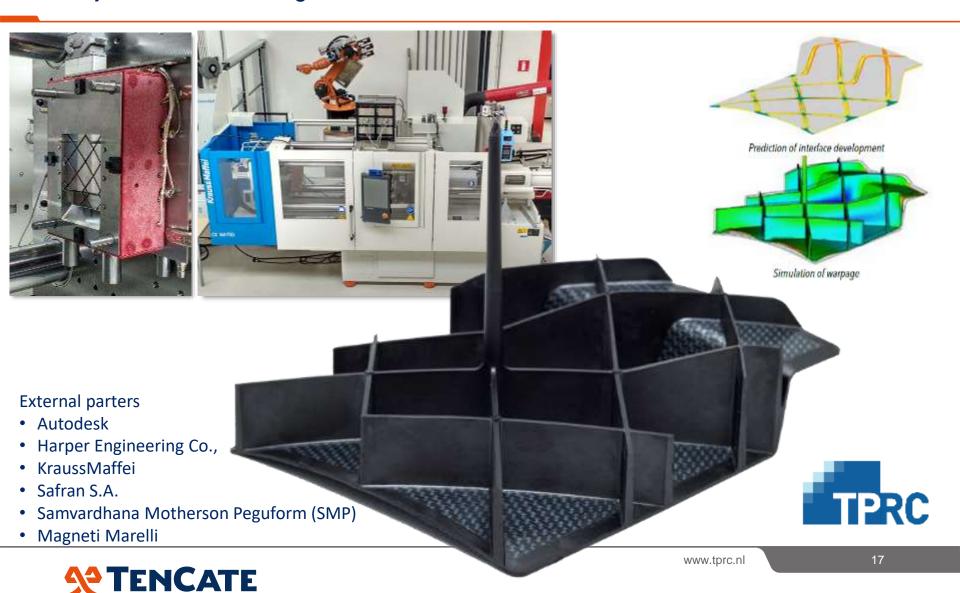


TPRC

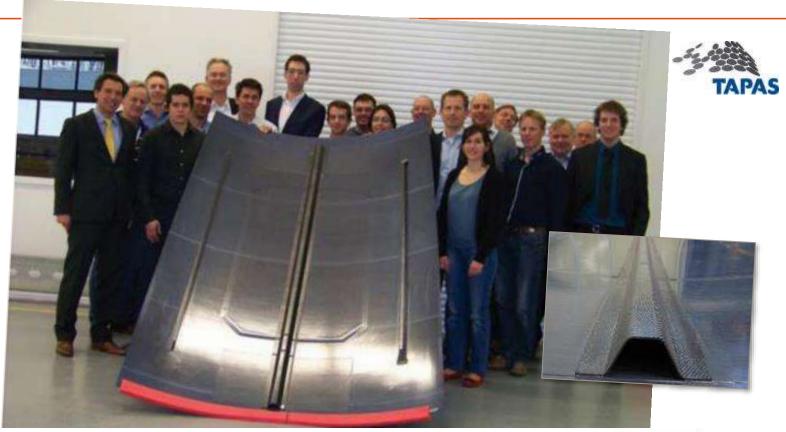
Joint Member Roadmap Projects

TPRC Technology Roadmap - Towards Predictive and Robust Manufacturing

www.tprc.nl



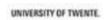
TPRC multilateral partner projects


Injection Overmolding: COMPeTE, COMPeTE2

ADVANCED COMPOSITES

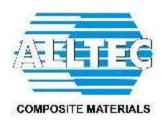
TAPAS

Thermoplastic Affordable Primary Aircraft Structure (2009..2013)



TAPAS2

Successor to TAPAS (2014..2017)



SPIRIT

Sao Paulo Initiative on Research into Thermoplastic Composites (2018....)

SAO PAULO INITIATIVE ON RESEARCH INTO THERMOPLASTIC COMPOSITES

SPIRIT

Goals

- To create a Brazilian Thermoplastic Composites ecosystem (Embraer, Alltec, ITA, UNESP, LEL IPT, IAE, Toray-TenCate) that collaborates to stimulate and accelerate thermoplastic composites innovation.
- To prepare for future adaptation and application of thermoplastic composites on a larger scale on Embraer platforms (structures and interiors)
- To build a local resource pool with in-depth knowledge and experience in thermoplastic composite materials, processes and design.
- To connect this strong Brazilian TPC ecosystem to established international thermoplastic composites networks (e.g. TPRC)

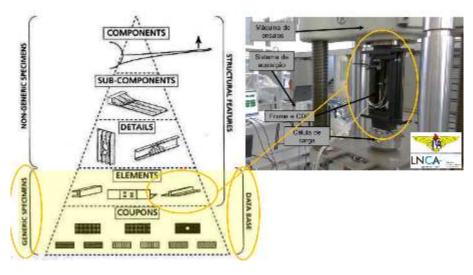
SPIRIT Launch Event

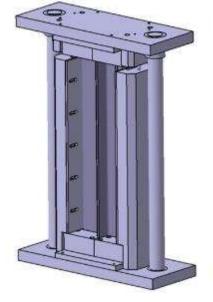
August 21, 2018

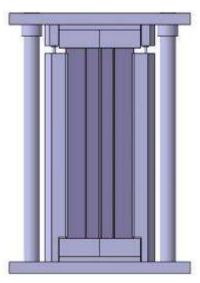
Activities

Phase 1: Material and processing screening

- Baseline: TC1225 carbon / LMPAEK
 - Laminates
 - Semipreg
 - Unitape
- Mechanical characterization
 - Tensile, flexural, (open hole) compression (after impact), interlaminar / inplane shear, Glc, ..
- Processing
 - Consolidation
 - Thermoforming
 - Welding
 - Coating
 - Non-Destructive Inspection






Activities

Phase 2: Element manufacturing and testing

- Manufacturing of components
 - Thermoforming
 - (Out-of-Autoclave consolidation)
- Assembly of stiffened element
 - Welding (resistance, induction, US, ...)
- Testing

Activities

Phase 3: Demonstrator component - "The SPIRIT of Flying"

- Application for EUREKA GlobalStars Grant
- Project planning: 2019..2021

Thank you for your attention let's work together.

Visit us at booth **B8C** for further discussion

Winand Kok w.kok@tencate.com

